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Stratification of the space of the structural constants of three-dimensional Lie algebras 
into the equivalence classes according to the criterion of their isomorphism over the 

field of real members is performed, and this makes it possible to enumerate the local 

Lie groups close (in some sense) to the Galilean and Euclidean groups and becoming 
identical with them at the “limit”. 

This constitutes the simplest of the problems dealing with the boundedness of the set 
of the Lie groups “refining” the Lie groups describing the already known physical objects. 
(The description of a physical object in terms of a group is understood here to conform 

to the physical treatment of the Klein’s Erlangen program Cl]). The theory of deforma- 
tion and contraction of rings and Lie algebras which was receiving attention in the past 

few years g-51 is concerned with similar problems. 

1, StrtemFnt of the problem, Let R denote a real Euclidean tensor space 

cjki (i, i. k G n) and r c R be one of the irreducible manifolds of the structural 

constants of the Lie groups G which can be separated from R by means of the Jacobi 

conditions (l-1) 
The space of the structural constants of the groups G is defined as the union of all r. 

The local isomorphism of G is an equivalence relation ( @I, p. 18). hence it controls the 
decomposition of the manifolds r into pair-wise nonintersecting sets H. Thus, one-to- 
one correspondence arises between the sets H and the nonisomorphic local Lie groups 
(and their algebras). 

Let A and B denote the sets of the space R. Here and in the following A denotes the 

closure of A in the real topology for the Euclidean spaces([6]. pp. 67,68) and An = 
= -3 fl B’ is the relative closure of A on B, the latter regarded as a subspace of R. 
Let also H’md H” be the different sets belonging either to the same manifold, or to 
different manifolds I’. We shall say that the local group G’corresponding to the set H’ 
is adjacent to the local group G” corresponding to the set H”, if 

Jr f-j H"*# A (1.2) 
where A is an empty set. 

Obviously, if G’ is adjacent to G”, a continuous sequence of groups G (h) locally iso- 
morphic to G’ when 0 < h _< A, exists, which converges to the group G (0) locally 
isomorphic to G” when ?, --f i 0 . 

The purpose of this paper is to obtain an algebraic description of the partitioning of 

the manifolds I? for three-parameter algebras and to enumerate all local groups adjacent 
to each of the groups G, and to the Galilean and Euclidean groups in particular. 

2. The method of rolution rnd the tenult. Let AG be the algebra 
of infinitesimal operators of the group G and X,, . . . , X, its basis. 
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The real linear group &L (n, B) wtme basis 

x; = 4xj Q, j = i, . . . * n), dot (a{) + 0’ 

is preselected from the basis of dG , consists of two connected sheets corresponding to 
the motions (det (a$) > 0) and reflections (det (cQ) < 0) and induces the represen- 
tation T in the space.R . ‘Transformations of the group T 

6’ 
Gj = C&,a,p~~~8, a:($ z= s; (8: - Kronecker tensor) (2.V 

conserve the relations (1.1) transforming each of the manifolds l? into itself. Transfor- 
mations of the groups induced by p and I’ exhaust all the transformations conserving 
the local isomorphism of the groups G . Consequently they realize the equivalence 
relation according to which the decomposition of the manifolds -s is performed. From . . 
this it follows that the sets H are orbits of T and of the groups induced by T on its inva- 
riant manifolds. 

Let r z= I? 23 l?’ 1 . . . 3 I? be such a finite sequence of invariant manifolds of 
the group T, that all invariant manifolds of this group containing rl are represented on 
it and set the group T be transitive on the manifold I? provided that the latter cannot 
be reduced to a set of isolated points, Then each orbit of p will either represent the 
connectivity component of one of the sets 

rO\l?, l?\P, . . . , rr-l\P, 1-r (2.2) 

or it will be the union of two components of the same set, the latter case arising when 
a reflection exists in the group “CL (n, R) generating a homeomorphism of one of these 
components into the other. 

Thus, the solution of the problem formulated above reqtires that: (1) invariant mani- 
folds of’ T must be found ; (2) its orbits must be computed and (3) the adjacency diagram 
in the sense of (1.2) must be constructed for de When the problem is solved in this order 
as shown in Sects. 3-5, we obtain the following result. 

We introduce the following notation: 

csst = u 

0; = C:,’ 

Cl2 9 
s=u 

Cl2 
a=$@ (23) 

fi = C$ Jr C1s9, - cd, y$l = 2f.4 - w2 + aifs 

f2 = cd + C2S21 8, = Cl21 - c232, x2 = 0,fi - 2wf2 - %f 3 

f 2 = Cl21 - c293* 0, = $21 4 c222, xs = @,f, + @Ifi - 2ufs 

= %,%,%, + cuvw + u%,” - r3q + jlA122 

$1 = $+ 4vw, *2 = 822 + 4UY, -& = 0,2 - 4uw 

$4 = %I%, + 2w%,, (\115 = %,%, - 2v%,, l&J = %,%, + 2U%l 

Q = Wi for fi # 0 (i = i, 2, 3) 

Symbol dim H denotes the dimension of the orbit coinciding with the rank of the mat- 
rix (3.5) of the infinitesimal operators of the algebra A T associated with the poup T 
computed at the points belonging to this orbit and 112 is the ordinal number of G accord- 
ing to Scheffers ( jJ7], see also [S], p. 167) classification. 

We thus have two irreducible manifolds rI and I?, of the structural constants and two 
series of groups G depending on whether the expression fi2 i- fi2 i- f3” does, or does 
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not vanish. 
Groups G belon 

Gr Lobachevskii 
ging to the finite series (jrs + fss + fss = 0) 
group (group of motions of the Lobachevskii plane) dim H = 6; 

m=l 

w>O, cp$:O; wcp<OP $I>0 
G2 spherical geometry group dim H = 6; 

w(P c 0, 91-c 0 
GsLorermsgroup(isomorphic to the group of plane transformations, time taken as 

the geometrical coordinate) dimH=5; m=2 

G4 

G6 

66 

‘?=o, ‘#i>o (i=1,2,3k a2+ *aa+$sa#O. 

Euclidean group dimH=5; 

Cp=O, *i&O (i=1,2,3), w+~~2+~*2#0 
Gal&an group dim H = 3;m=6 

cp = 0, 44 = 0, 24% + .i9 + w2 + 0 

commutative group dim H = 0; m, = 7 

cp = 0, g, = 0, us+l9+wa=o 

Groups G belonging to the infinite (continuous) series (fi2 -k 

+ t22g jss > O). dim H = 5, m = 2.5 

Xl = xa = X8 = 0 (q-J = O), 51 = co # 0, 00 

Gr dim H = 5; m = 4 

xl = 
X2 =.xs - 0 (cp = 01, Jz = 0, u2+v2+w2#O 

Gs dim H = 3; m = 3 

Xl = xw = X8 = 0 (cp = 0) 62 = 0, us+vs+ws=o 

The orbits of T lying on the manifold rr correspond to the groups of the finite series 
and the orbits of T lying on rt, to the groups of the infinite series. Symbol GG denotes 
the group continuum: each pair of distinct real values of co has a corresponding pair of 
nonisomorphic groups of ‘G. Passage to the limit co -+ 00 formally yields the h&entz 
group. For the soups of the type Gk , the following commutative relations are pointed 
out by G. Scheffers: 

(XI, X,) = 0, (XI, Xs) = XI, (X2, X2) = 4 (c # 0, 1) (2.4) 
which in turn yield 

Q=co= G 2, 
i J 

Thus, c = - 1 corresponds to the Lorentzgroup. The same group corresonds to both 
values, c’ = c and c” = 1 1 c , therefore all algebras defined by (2.4) are obtained 
at-l<c,(l. However, in this case the constant c.. assumes positive values only, 
andtoobtain co<0 onewouldhavetoset c = e*(OCcp<n). 
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Figure 1 shows the adjacency diagram for the groups G . Each column contains the 
groups for which the orbits fi belong to the same manifold I’ and each row contains the 
groups whose corresponding orbits are of the same dimension. The arrows indicate the 
adjacencies. The diagram is transitive: if G’ is adjacent to G” and G” to G”‘, then G’ 

is adjacent to rJN’. 
All groups except G’ and 6s have a solutioc. The 

groups G’, .**, @J of the finite series describe five out 
of nine Cayley-Klein geometries ( [SJ. p. 210). The 
diagram shows that the Euclidean group is adjacent to 
both, the Lobachevskii and the local spherical geometry 

group, the fact established by Riemann in geometrical 
terms ( @], pp. 155,156). Thus the geometries listed 
above are the only geometries refining the plane Eucli- 
dean geometry. All these groups can be realized as the 

Fig. 1 
groups of motion of a two-dimensional Riemannian 
space of constant curvature ( P’J, p. 273). The Lorentz 

and Euclidean groups are directly adjacent to the Galilean group. This is another well 
know fact established by Poincare and Einste.in in the course of investigation of the fun- 
damental properties of the space-time. In addition the infinite series of groups Gc* is 
also adjacent to the Gal&an group. Since, as we already said, the Lorentz group is for- 
mally related to their number, a question arises, why out of all groups GQ it is the Lorentz 
group that makes the properties of the Gal&an space-time more precise. 

As we know from @],(p. 3%). the Lie group of transformation can be reconstructed in 
terms of its structural constants only with the accuracy to within the similarity (in other 
words, with the accuracy allowing the choice of a coordinate system ~i~rne~~g the 
transformed space). For this reason the knowledge of the groups adjacent to the given 
group does not present us with all the possible improvements in the theory described by 
this group. We follow with some examples of algebras AG for the groups G’ of trans- 
formations. 

Group ~1, IR the polar coordinates u, v we have 

The commutation relations are 

(XI, X!A) = x,, (XI, xst = -x2, (X2, X2) = -02x, 

and the transformations of the group preserve the metric ( [IO] p, 89) 

dsa = dua + G (u) dd 

G r o u p Ga, is obtained from Q by means of the transformation 

CT * ia 

Group GS (z is the geometrical coordinate and it ‘is time) 
a a 

X1==, x2=,,, x2=t7&+p2z+- 

The commutation relations are 
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(Xl, X2) = 0, (Xl, X3) = pax29 

and its transformations preserve the metric 

a.4 = - pad9 + dP 

G r o u p G4 (5, y are Cartesian coordinates) 

(Xa, X3) = x, 

a a a a 
Xl”~’ X2=,,, Xa=yar-"ay 

The commutation relations are 

(XI, X2) = 0, (XI, X3) = - x2, 

and its transformations preserve the metric 

ds2 = dx= + dya 

(X2, X3) = x, 

( G4 can also be obtained from G3 by means of,&&sformation p - i1.4. 
Group G6 (z is the geometrical coordinate and t is time) 

a a -- x1 - ax 9 x2 =- at ’ 
X$d& 

The commutation relations are 

(XI, X2) = 0, (Xl7 X3) = 0, (X2, X3) = Xl 

and no metric preserved by its aansformations exists. 
Groups GCO 

XI==&, x2=+, X3=(t+coz) & + (t + 4 & 

The commutation relations are 

(XI, X2) = 0 (Xl, X3) = x1 + cox2, (X2, X3) = x1 + x2 

The metric preserved under the transformations of the groups, if it exists, can be found 

by integrating the Killing equations ( [9], p. 251). 

3. Invrriantr and invariant mrnifoldr of 
obtain the components 6;: of the infinitesimal operators 

of the algebra A T of the group T. 
-, 

Differentiating (2.1) with respect to at’we obtain 

We take as &$ the derivatives dc fi / c?$ accompanying the values a: = a? = 6: 
corresponding to the identity element of the group GL (n, R) 



Three-parameter Ui grou_ps 247 

The commutation relations inthe resulting basisofthe algebra A T have the form 

(YZ, Y;:) = sgr; - s;r;s 

Using the notation (2.3) we can write the Jacobi equations (1.1) as 

x, = x, = x3 = 0 (3.2) 

From this it follows that either 

fr* + f** + f32 = 0 (3.3) 

of flz -I- f,* -I- fS2 > 0, and then 

224 -0s 8, 
2cp= 03 -2w -01 = 2(e,e,e,+4uvw+ue,a fw3,a - v0,2) = 0 (3.4) 

0, 0, -2v 

It can be shown that (3.4) is equivalent to the Cartan condition of solvability of the 

groups G. 
In the variables u, v, w, fi, 6, (i = 1, 2, 3) the matrix of the infinitesimal oper- 

ators of the algebra A T assumes the form 

_-- 

Yl’ 
Y12 
Y13 

Y2l 
y22 

y23 

Y3l 

ys2 

Y33 

I- 
-U V W 01 0 0 fl 0 0 

e* 0 0 0 -2v - 81 0 0 - fi 
-es 0 0 0 0, -2w 0 - fl 0 
0 -0s 0 - 63 2u 0 -ts 0 0 

U -v W 0 0 0, 0 0 fs 

0 81 0 - 2w (33 0 0 f3 0 

0 0 - 03 e* 0 - 2u -fz 0 0 
0 0 --t-J 2v 0 @a 0 0 f2 

U V -w 0 02 0 0 f2 0 

It can easily be shown that (3.3) and (3.2) together with (3.4) define the invariant 

manifolds of the group T. The set of all invariant manifolds of the group induced by T 
on the first manifold 1’, forms the sequence 

ri 2 r: zl r: 2 r; 

The group induced by T on the second manifold r2 is intransitive. Its transformations 

leave a continuous set of surfaces r2co C r2 corresponding to the invariants of T unaf- 
fected, with varying real values of cO filling the whole manifold r2. The group T exists 

and is locally transitive on the surfaces r 2co at all general points,admitting the inva- 
riant manifolds’~~,l and I’s* C rs” at c,, = 0 . 

Using the standard methods of computing the invariants and invariant manifolds ( [9], 

pp. 84- 89), we obtain 
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rl = ifi = f2 = f3 =I o;.; rl” = (fl = f* = f3 = 0, cp = 0) 

rx2 = Efl = f, = f3 = 0, ‘p = 0, I& = 0) (i=l,...,S) 

l-l3 = (II = fa = f3 = 0, cp = 0, $4 = 0, z.! = u = w = 0) 

r2 = {Xl = x2 = x3 = O>,l r2c* =2: {Xl = x2 = x3 = 0, cp = 0, sz = co> 

r21 tr2c+ at co = 0) = (~1 = ~2 = x3 = 0, cp =: 0, Q = 01 h+ot 

r22 = (Xl = x2 = x3 = b, cp = 0, s2 = 0, 26 = v = w = 0) 

We note that the tensorial character of the structural constants and the general theory 

of algebraic invariants Cl%] together imply that tensor contraction and alternation may 
be employed to obtain the invariants and invariant manifolds of the group T. 

4. Orbits of the group T. Here we shall use several simple assertions, the 
first of which is obvious. 

4.1”. Let the set A belonging to the space R be defined by the following system of 

simultaneous algebraic inequalities I( 

qL(y,...,y,; ZI,...,IJ),O (i-L..., m), 2 oj"(~l,.-*,.Q#* 

j=l 

the left-hand sides of which are such that (a) the nonempty set B defined by the condi- 
tions oj > 0 (j = .I, . . . . k) is connected and (b) the system of equations cp{ = 0 (i = i, 
. . . . m) has a unique solution in the variables I/~, . . . . Ye at any point of B. Then the set 
A fi B defined by the inequalities qI ‘> 0, . . . . ‘pm 20, or > 0, . . . . air > 0 is connected. 

4.2*. Let C and B be sets belonging to .R and considered as subspaces and let one 

of the mappings 

1' - 3' - l'_ 1 g1: Cl2 - --cl;, tag - - c2;, Cl3 - C13, c2;' =cagt a Cl", = cl;' cl; = cl; 

l'=c 1 3' 1' 
‘ 

gs : Cl2 
2' 3' a 

12' c23 = c2;, Cl3 =-cl;, c& = -c&, Cl2 =c& Cl3 = %a 

(with U( = -U V’ = - v and W’ = - w in all three mappings) be a homeomorphism 

of the set C on ;he set D. Then C and D both correspond to the same local group G. 
III this case we shall speak of the sets C and D as connected by a reflection and assume 

them to be not essentially different. 

Proof. The commutation relations 

(-Vi, Sj) = Qj x, (i, j, 12 = 1, 9, 3) 

of the algebra AG show at once that the mappings g,, gz and gSare generated by the 
reflections SZ’ = -X2, X0’ = - X,, XI’ = -XI respectively_ 

4.30. When f~’ -6 k” i- fi’ = U we have, by (2.3). the following identities: 

(EQn’ = $d?$G -?i_ 1’s+;, ‘&sl = $I$4 + $@A cpCl22 = $a% f WI% 

‘, II = l&z - lPalp3, cpu = &$?, - $?, W =: h2 - %%3 
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‘p 3 = *g&3 + q&a3 + ***33 + w&3$3 - SIwkS (co=) 

Their validity can be checked by direct verification, 

The orbits of 2’ are found, one after the other, for all sets pa-r\I’a (see Sect, 2). 

S et rr \rr’. If the sign of the functiba rp, is given, then by 4.3’, the variables 

_Gt clsll cra2, ca3 1 = u, qs2 = v and c,> = w are expressed uniquely ln terms of 
$i’aS parameters. The latter quantities are constrained here by the relation 

*r$%= + 9&&+ r1.1a\pEw2 + 21p&&s - 91%#8 > 0 

By 4.1” and 4.2* each of the sets given below consists of two connected parts joined 
by a reflection 

9 + 0, $,4” - *r*lg > 0, (hence 9% > P) (4.1) 

cp # 0, $2 -91&i< 0, $I> 0 (hence 'C'S> 0, $3 C P) (4.2) 

rp =/=O, s,” - 91% < 0, q1 < 0 (hence % < 0, % <PI (4.3) 

When ‘44” - $l$s < 0 and & > 0 the function q taken as a homogeneous quadratic 
form in &, and &, is positive definite. Since 4 + 00 when Sp2 - +r$$ + - 0 
(otherwise cp -+ 0)) p + 00. Since $~a < p; a continuous passage exists from the 
set (4.2) to either of the two connected parts of the set 

cp#O, $p2 --$1$3& 0, %>O (4.4) 

On the other hand, when qz - q1$3 > 0, the form q has an alternating sign and the 
variables can be chosen in such a manner that .q_ > 0, without violating the remaining 

conditions. Tben p + - 00 as $a” - %&I/.)~ + 0 and the fact that 9s > p implies 
that a continuous passage from the set (4.1) to the set (4.4) is possible. 

Thus the union M1 of the sets (4.1). (4.2) and (4.4) belongs to the same orbit. We 
can define this orbit, in accordance with 4.3’. as the union of two nonintersecting sets 

defined by the inequalities 

J‘f1 = <wrp >, 0, cp =k 0; rQ < 0, $1 > 0) 

Denoting by.n/r, the set defined by (4.3) (according to 4.3’ it can also be defined by 

the inequalities w’p ( 0 and Jzr < 0) we obviously have Mi U M, = ~,\I’,‘. 
We shall show that each of the sets %I and M is an orbit of the manifold rr. For this 
it is sufficient to establish that the boundary & 2 \ M, of the set ikf, cannot be reached 
from within this set. Ideed. when 92 - $r%/)s < 0 and qr < 0, the form,q is nega- 
tive definite so that p --t - co as $,” - $I$3 + 6. Then the condition *a < p 
indicates a violation of the connectivity during the passage from the set M, to its closure 

M,. 
S e t I’,’ \ lT12. This set is defined by the conditions fi2 -i- fa2 + fa’ = 0, ‘9 = 0 

and $iz + $a2 + *aa # 0 (if *i2 + *aa + 9s” = 0 then 4; 3” yield the equations 
*i = 0 (i = 1, . . . . 6) defining the set rr2). From 4.1’ it follows that the subsets of 

r,r\ rr2 given below are connected 

K, = (cp = 0, $I> 01, L, = {(p = 0, $1 c 0, w > 01 

N, = {a, = 0, $r< 0, w < 0) 
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K2 = {cp = 0, $2 > O}, La = {rp = 0, $2 -c 0, v > 01 (cont. ) 

N, = {cp = 0, $2 < 0, v < 0) 

K, = {(P = 0, 93 > 01, L, = (ql = 0, $3 < 0, w > 01 
N, = {cp = 0, $3 < 0, w < O} 

According to 4.2’ the sets Li and iVk are connected by a reflection for i = k . By 

4.3’ the functions $I, I&, 9s cannot have different signs at the same time, at cp = 0. 
The sets Ki and Li U Ni must therefore be determined by the inequalities 

Kl = ((P = 0, $,1> 0, 9s > 0, $3 > 01, L, u N, = {(P = 0, $,< 0 

is < 0, 4)3< 01 

K2 = {(P = 0, $1 > 0, $2 > 0, $3 > 01, L2 u.Ne = {cp = 0, $1 GO 

$2 < 0, 93< 01 

K3 =$cp = 0, $l>O, $2 > 0, $3) 01, ~53 u N3 = {cp = 0, 91 =zO 

92 G 0, 93< 01 

From this it follows that K, fl K, n K3 #A so that the set Kl /J K2 /J K3 is con- 
nected and defined by the conditions 

(4.5) 
Ii2 + f2” + fP = 0, cp = 0, $1) 07 $2 > 0, $3 > 0, a2 + $22 + h2+o 

The intersection of all sers Li U Ni is also nonempty. This implies that their union 
is connected and defined by the conditions 

(4.6) 
fl” + fi” + ff = O7 q = O9 $1 < ‘9 $2 < O, 93 & O, $12 + $22+$!2 # o 

Any continuous curve connecting the points of the sets (4.5) and (4.6) obviously inter- 
sects the set r12.This means that each of the sets (4.5) and (4.6) forms an orbit lying 

on rl. 
Set r12 \ r13. We shall show that this set decomposes into two connectivity com- 

ponents joined by a reflection, and forms therefore a single orbit of the set rI 

fi2 + f22 + fs” = 0, cp = 0, $12 + $22 + $32 = 0, u2 + v2 + w2 + 0 

Indeed, according to 4.1’ each of the sets 

fi = Ipi = cp = 0, u > 0; fi=qi=(p=o, u<o 

fi = qi = cp = 0, v <y 0; fi = *i =ql=o, v>o 

fi = qi = q.J = 0, w > 0; fi=qJi=(P=O, w-co 

is connected. When the conditions $1 = $2 = ‘$3 = 0 hold, only the following com- 
binations of signs are possible : 

or 
u>o, v<o, w>o, u2+v2+wa-#o 

u<o, v>o, w&O, Us+vs+Ws#O 

This implies that the set &” \ r13 decomposes into two connected sets 

fi_= pi= Cp=O, U~O, V~O, Wa", Uz+V2+wz#o 

fi=~)i=(P=O, U~O, V>O, WsOo, U2+V2+W~#o 
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joined by a reflection. 
S e t I’,s consists of a single point, it forms a unique orbit. 

set r,G (c,, # 0). We shall &stinguish two cases, co < 0 and co > 0. 
(1) For co < 0 we have w + 0 and the equations 

cp 07 = 0,s + 4vw = cofl’ 
have a unique solution in II and’ v 

t,J=- - Yes% + we,= + ete& 

co 

v = cay-81* f a 
18 

According to 4.1’ and 4.2’ we have two connected sets defined on the set r,% by 

the conditions w > 0 and w < 0 respectively and joined by a reflection. 

(2) For co > 0 we have Or2 + 4vw > 0. 
Since f,fi = f 1/8,2 + &W and the set 8,s + 4vw > 0 is connected, the 

set race decomposes for co > 0 into two connected subsets (corresponding to the condi- 

tions fi > 0 and fr <, 0) joined by a reflection. Thus for any real value of co the set 
lY2Q (co #O) defines an orbit belonging to r2. 

‘Set r21 \ rza is defined by the conditions 

Xt = Xs = Xs = 0, Cp = 0, n = 0, U2 + Va + W2 # 0, 4i = 0 

and forms a unique orbit of r2. This can be proved in the manner analogous to that used 

for rf \ r13. 
S et rza defined by the conditions u = v=w=e l=g2=es=0 isobviously 

connected, hence it defines a unique orbit of I’,. 

5. AdJaarncy diagram. Let Pa = lYja-l\ rf and 1etHbe the connec- 
tivity component of the subspace Pa in R. Then H is closed on P”. We have 

H=& = B n (rj”-l\r,+ (B\r,y n r;-l =B\r,a 
From this it follows that a \ H C r”. Consequently the group G corresponding to 

the orbit .I? C Pa C rj- is adjacent to those groups, whose orbits belong to the 
invariant manifold rl”. 

G', . . . . 
This fact is used to determine the adjacency in the groups 

G" and partly in the groups of the continuous series. In addition, the orbits 
corresponding to the groups of the continuous series include the segments of the boundary 
defined in R by the intersection 

rl,-j F2= {fi” + fi” + f2 = 07 cp = 01 
and this forms the condition of adjacency of the groups of the continuous series to the 
groups G5and Geof the finite series. 

In Sect. 4 all orbits are defined in terms of the algebraic inequalities. Let us e. g. 
verify the closure of the orbit Ma c I’l\I’ll on the subspace TI\l’I1 using its definition 

(4.3) 2 9s - $121rs < 09 $1 < 0 9 $3 < 0, p > 0 

(the closure of the remaining orbits is obvious). For this it is sufficient to show that 
none of these inequalities can .become an equality while the rest of them remain ine- 
qualities. Suppose that % = 0. Then IJQ - I#~Q~ > O_, If W’ - oI$s = 0 and g # 0, 
then by 4.3” w = U and 9 & 6. Consequently the equalities $I= G and $,t - $I$s = 0 
must hold simultaneously. But then the relation ‘p2 = gs~Q > 0 implies that ‘vs > 0. 
Consequently the equalities lpl = I& = IQ - I@~I$~ = 0 must hold simulteneously and 
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this implies that ‘p = 0, the latter defining the invariant manifold .I‘,i. 
The author thanks E. E. Shnol’ and the participants of a seminar directed by D. P. Zhe- 

lobenko and A. I. Shtem for discussion on the results of this paper, and F. A. Berezin and 

A. A, Kirillov for useful comments. 
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STABILIZING A MECHANICAL SYSTEM 
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L. K. LILOV 
(Sofia) 

(Received July 9, 1970) 

The problem of determining the smallest number of controls stabilizing the equilibrium 

position of a mechanical system is investigated. Necessary and sufficient conditions are 
established under which stabilization of the equilibrium position is possible with a con- 
trol of minimal dimension, and this dimension is determined. The influence of gyrosco- 
pit and dissipative forces on the dimension of the stabilizing control is studied comple- 
tely for a linear approximation of the system being considered. Necessary conditions 
are found under which stabilization is possible by forces which depend only on the velo- 

city. 

1, We consider a controlled conservative mechanical system with n degrees of free- 
dom, whose motion is described by the Lagrange equations 

d tYT 
-7- dt tiqi 

~+~=Q,(u~,..~~(I,), Qi(O,.-*,O)=O (i=l.-..tn) (1.1) 


